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Abstract: We consider a D-brane type state which shares the characteristic of the re-

cently found giant magnon of Hofman and Maldacena. More specifically we find a bound

state of giant graviton (D3-brane) and giant magnon (F-string), which has exactly the

same anomalous dimension as that of the giant magnon. It is described by the D3-brane

with electric flux which is topologically a S3 elongated by the electric flux. The angular

momentum and energy are infinite, but split sensibly into two parts — the infinite part

precisely the same as that of the giant magnon and the finite part which can be identified

as the contribution from the giant graviton. We discuss that the corresponding dual gauge

theory operator is not a simple chain type but rather admixture of the (sub-)determinant

and chain types.
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1. Introduction

The recently found giant magnon of Hofman and Maldacena [1] supplies us with an impor-

tant piece of information in the AdS/CFT/spin chain triality [2 – 5] and [6 – 8]. The giant

magnon is the string theory dual of magnon in the infinite spin chain at large ’t Hooft

coupling.

The spin chain concerns the states in the string theory on AdS5 × S5 which carry

angular momenta in S5. The chain length is set by the angular momentum J of one’s

choice in S5. So the corresponding states in N = 4 super Yang-Mills (SYM) contain

ZJ ′≤J where Z is a complex adjoint scalar, and the J − J ′ insertions of other complex

scalars correspond to the spin excitations. The spin chain Hamiltonian corresponds to the

dilatation operator in N = 4 SYM. The range of spin interactions correlates with the order

of the perturbation in ’t Hooft coupling λ. At the one-loop order the spin interaction is

the nearest neighbor and at two-loop the next to the nearest neighbor, and so on. For

instance, for the smallest closed set of states (SU(2) subsector), the spin chain is the

XXX1/2 Heisenberg chain at one-loop [6] and Inozemtsev chain [9] at two-loop [10]. The

magnons are elementary excitations in the spin chain and carry the momentum p. They

are also a convenient set of states in order to diagonalize the spin chain Hamiltonian, and

constitute the essential basis for the Bethe ansatz.

In fact the chain can be identified as the spatial extension of the string in the gauge

in which the angular momentum J is uniformly distributed over the string. The magnon

is then an excitation of the string, and the momentum p is the worldsheet momentum

of the excited string.1 The α′ of the string in AdS5 × S5 is proportional to 1/
√

λ. So

1The total momentum of physical excitations must vanish due to the translation invariance on the

worldsheet. So the single magnon with nonvanishing p is not physical, corresponding to the fact that the

gauge theory operator representing the magnon is Op ∼
P

l
eipl (· · ·ZZWZZ · · ·) which is not traced thus

not gauge-invariant. We will come back to this point later.
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naively the α′ expansion corresponds to the strong ’t Hooft coupling expansion. However,

the string states of our interest carry the angular momentum J . In the ingenious limits

such as BMN/pp-wave limit [11] (including near BMN corrections of [12])2 and multi-spin

strings of [13] where the ratio λ′ = λ/J2 is fixed as λ and J taken to infinity, the energy of

the semi-classical excited string turns out to admit the λ′ expansion, rendering it possible

to compare the string theory and gauge/spin chain results in the weak ’t Hooft coupling

expansion. The existence of such double scaling limits is quite remarkable. However, it

would be necessary to go beyond these limits in order to understand the integrability of

the full string theory on AdS5 ×S5. In particular the magnon has been poorly understood

in the string theory side, except for the low momentum case. As the magnon is an essential

element in the Bethe ansatz, it would be an important step to understand the magnons in

the string theory side.

At large ’t Hooft coupling the spin chain is very long-ranged. The spin chain Hamil-

tonian/dilatation operator is practically incalculable, as it requires the all-loop SYM com-

putation. Nevertheless, for the infinite chain (J → ∞), the all-loop (asymptotic) Bethe

ansatz was guessed from the spin chain perspective guided by the integrability, BMN scal-

ing, and a few loop order results in SYM [14, 15]. Remarkably the all-loop guess was later

derived by Beisert only by the use of supersymmetry without need of knowing the detailed

dynamics of N = 4 SYM [16] except for the inspiring inputs from it.3 This is a significant

result. In particular the (asymptotic) S-matrix was determined almost completely up to

a phase factor. Incidentally fixing this phase factor is one of the current major issues.

However, we will not discuss about it in this paper.

This nonpertubative gauge theory result makes it possible to compare the string theory

and gauge/spin chain results far from the BMN type limits. The limit taken here is instead

N → ∞ and then J → ∞ with λ kept finite. In particular, the dispersion relation of

magnons shows the distinct momentum dependence — the energy is periodic in momentum:

E − J =

√
1 +

λ

π2
sin2 p

2
, (1.1)

for a single magnon.

At first sight it might appear that the periodicity in momentum suggests the discrete

worldsheet in which the lattice spacing is to set the period. However, as it turned out, the

magnon is dual to a macroscopic open string orbiting in S5 (the giant magnon), and the

momentum p is the geometric angle between two endpoints of the string, in accordance

with the fact that p is canonical conjugate to the angular momentum J [1]. The periodicity

of p then follows without discretizing the worldsheet. The upshot is that the giant magnon

precisely reproduces the large ’t Hooft coupling limit of the dispersion relation/anomalous

2Indeed the three-loop discrepancy was encountered and left unresolved.
3There is another very intriguing development in this direction [17]. The Hubbard model confirms

the all-loop guess [14] of Beisert, Dippel, and Staudacher (BDS), up to the order at which the wrapping

interaction would invalidate it. This model is particularly interesting, for it is short-ranged and capable of

dealing with the finite chain. At more conceptual level, the Hubbard model might be suggesting a more

convenient set of degrees of freedom to describe the theory.
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dimension (1.1):

E − J =

√
λ

π

∣∣∣sin
p

2

∣∣∣ , (1.2)

provided that p is not too small.

We might then hope that further studies of the giant magnons will lead us to the better

understanding of the integrability and Bethe ansatz for the AdS5 × S5 string.

Several works on the giant magnons have appeared. One of the directions under

study is the multi-magnon bound states initiated by Dorey [18] and followed by [19 – 23].

The bound states correspond to the giant magnons with two or three angular momenta

in S5. The reference [19] also discussed the dual giant magnon which stretches in AdS5

corresponding to the magnon in the SL(2) sector. An important direction to pursue is

to calculate the stringy corrections. This was done at one-loop in the limiting case of

J1 ¿ J2 for the giant magnon with two angular momenta, finding the agreement that it

is absent [19]. More challenging but conceptually important question is to understand the

case of finite chain. This question was studied in an interesting work [24]. Partly related

to this work, the classical (closed) strings with finite J were further studied in [23]. The

generalization to a deformed background (β-deformation) was made in [25, 21], and also

the M-theory generalization was studied in [26].

In this paper we consider a D-brane type state which shares the characteristic of the

giant magnon. The D-brane type states play import roles in AdS/CFT. A well-known

example is the giant graviton which is a spherical D3-brane rotating in S5 and expanded

either in S5 [27] or AdS5 [28]. The giant gravitons are degenerate states with a graviton

state propagating in S5. In the semi-classical approximation, at low energy E ∼ O(1) the

adequate description is provided by the graviton, while at high energy E ∼ O(N) by the

giant gravitons . In the dual CFT the former corresponds to the trace operator TrZJ and

the latter to the multi-trace operators TrAZJ and TrSZJ , where the subscripts A and S

denote the antisymmetric and symmetric representations respectively.

Another example is the D-branes corresponding to the Wilson loop operators — the

D3-brane of AdS2 × S2 shape [29] and the D5-brane of AdS2 × S4 shape [30]. They are

the bound states of a D-brane and fundamental strings. The former corresponds to the

Wilson loop in the symmetric representation TrSU and the latter in the antisymmetric

representation TrAU , where U = P exp
(∫

C ds(Aµẋµ + Φ|ẋ|)
)

[31].4

The D-brane type state for the giant magnon we will discuss in this paper can be

thought of as a bound state of giant magnons (F-strings) and a giant graviton (D3-brane)

expanded in S5. So clearly it is closely related to the giant graviton, but at the same time

being the bound state of a D3-brane and F-strings, it is also akin to the “giant” Wilson

loop.5

4The D-brane description is valid when the number k of fundamental strings is large. In particular, in

the case of the D3 “giant” loop, the more correct statement is that it is dual to the Wilson loop TrSkU in

the k-th symmetric representation which at large k is indistinguishable from the multiply wound Wilson

loop TrUk.
5There is another example of bound states of giant gravitons. In the presence of the NS-NS B-field, the

giant in the plane-wave background can form a bound state with D1-branes. The D1-branes wrap on the
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The organization of the paper is as follows. In section 2 we find the D-brane type state

for the giant magnon as a classical solution in the low energy effective theory of the D3-

brane in the AdS5 × S5 background. We call this object the fat magnon. The anomalous

dimension, E − J , is shown to be the same as that of the giant magnon. We provide

evidence for the interpretation that the fat magnon is a threshold bound state of the giant

graviton and giant magnons in the limit we are taking. We then discuss the dual CFT

operator to the fat magnon. Our proposal is not complete. We outline the main ingredients

to construct this operator and discuss a possibility. In section 3 we briefly conclude our

results.

Note Added: The fat magnon in the plane-wave background was previously found by

Sadri and Sheikh-Jabbari and called giant hedge-hog [33].

2. Fat magnon

We wish to find a D-brane type state which shares the characteristic of the giant magnon.

The D-brane suitable for this purpose will be the (topologically) spherical D3-brane of the

giant graviton type, since we consider the state with angular mometum J in S5. To be a

magnon-like state, it is essential to have the characteristic geometric angle in S5 for the

object of our concern, which corresponds to the magnon momentum p. So the D3-brane

may lie in S5 rather than AdS5. However, the giant graviton does not have an open angle.

To develop such an angle, the spherical D3-brane ought to be elongated. The stretch of this

deformation will be parameterized by the geometric angle. This can be done by turning on

an electromagnetic flux on the brane. In this case it would be natural to turn on an electric

flux, thus attaching a F-string to the D3-brane, since the giant magnon is a F-string. Then

the D-brane state so constructed will be the bound state of the giant graviton and giant

magnon, which naturally inherits the property of the giant magnon. We anticipate that its

anomalous dimension E − J will be exactly the same as that of the giant magnon, since

E − J is zero for the giant graviton and the only contribution would come from the flux,

provided that this is a marginal BPS bound state. This is indeed the case, as we will see

below.

We call this bound state the fat magnon. The fatness is that of S2. As is familiar,

despite being topologically spherical, it is stable due to the Myers effect [34] in the presence

of the RR five-form field strength.

2.1 The string theory side — probe analysis

We work in the probe approximation. Since we are interested in the finite size probes

with infinite energy, the approximation is, strictly speaking, not justified. Nevertheless, we

would still expect the quantitative accuracy of the computation, as is often the case for the

BPS configurations.

S3 and squash the sphere giant [32].

– 4 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
0

2.1.1 Giant magnon

We begin with a brief review of the giant magnon [1]. The giant magnon is a macroscopic

open string orbiting in S5 and whose endpoints sit on the equator, as shown in figure 1 (B).

We adopt the coordinate system by Lin, Lunin, and Maldacena (LLM) [35] which turns

out to be particularly convenient for our purpose.

The relevant part of the spacetime is R × S5. In the LLM coordinates, it reads

ds2

∣∣∣∣∣
ρ=0

= R2

[
−

(
1 − r2

) (
dt − r2

1 − r2
dφ̃

)2

+
dr2 + r2dφ̃2

1 − r2
+

(
1 − r2

) (
dχ2 + sin2 χdΩ̃2

2

)]
,

(2.1)

where ρ = 0 indicates that we are focusing on the geometry at the center of the global

AdS5, that is, R × S5. R denotes the radius of S5 and AdS5. If we set r = cos θ and

φ̃ = φ − t, we recover the standard coordinate system for R × S5.

We denote the worldsheet coordinates by (τ, σ) and choose the static gauge t = τ . We

now make the ansatz for the shape and dynamics of the string as

r = r(σ) , φ = φ(τ, σ) , (2.2)

where φ = φ̃ + t.

Then the Nambu-Goto action yields

SNG = −
√

λ

2π

∫
dτdσ

√
r′2

1 − r2
+ r2φ′2 − r′2r2

1 − r2
φ̇2 , (2.3)

where we have used the fact that R4 = 4πgsNl4s = λl4s . The dash and dot denote the

derivative with respect to σ and τ respectively.

Let us introduce the Cartesian coordinates (x1, x2) = (r cos φ̃, r sin φ̃), in terms of

which we have

r′ =
x1x

′
1 + x2x

′
2

r
, φ′ =

x1x
′
2 − x2x

′
1

r2
.

We wish to find the solution with φ̇ = 1. We further make the ansatz that x1(σ) is constant.

Indeed the equations of motion with respect to φ and r are automatically fulfilled. So x2(σ)

is an arbitrary function. We now fix the residual gauge freedom σ → σ̃(σ) by choosing

x2(σ) = aσ + b where a and b are constants. We then impose the boundary condition that

both ends of the string reach the edge (r = 1) of the droplet. Let us also fix the range of

σ to be 0 ≤ σ ≤ π. Then the solution yields

x2(σ) =
2

π

√
1 − x2

1

(
σ − π

2

)
, x1 = const . (2.4)

Since the action is invariant under the translation of φ (or φ̃), any pair (x1, x2) obtained

from (2.4) by a rotation is a solution.

One can readily see that the angular momentum J =
∫

dσπφ where πφ = ∂L/∂φ̇ as

well as the energy E =
∫

dσ(φ̇πφ − L) diverge. For later use, we give the explicit formula

for the angular momentum,

πφ =

√
λ

2π

x2
2x

′
2

1 − r2
. (2.5)
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Figure 1: (A) The giant magnon in LLM coordinates: The metric (2.1) corresponds to the inside

of the disk (droplet). The thick straight line represents a giant magnon. (B) The giant magnon in

the standard spherical coordinates.

However, their difference E − J remains finite and yields the magnon dispersion relation

at large ’t Hooft coupling,

E − J = −
∫

dσL =

√
λ

π

√
1 − x2

1 =

√
λ

π
sin

p

2
, (2.6)

where p is the geometric angle between two endpoints of the string, as sketched in figure 1.

2.1.2 Fat magnon

As motivated above, we consider a topologically spherical D3-brane with electric flux. So

what we will find is a variant of BIon of [36]. Two endpoints of the giant magnon bound

to the giant graviton corresponds to a pair of unlike electric charges put at the antipodal

points in S3. They will develop the spikes as in the BIon case. So the fat magnon will look

like the figure 2.6

Let the worldvolume coordinates be (τ, σ1, σ2, σ3). We work in the static gauge t = τ

and the embedding of the D3-brane into (2.1) as

χ = σ1 ≡ σ , Ω̃2 = (σ2, σ3) . (2.7)

We make the ansatz for the shape and dynamics of the D3-brane as

r = r(σ) , φ = φ(τ, σ) . (2.8)

This is the same form as in the case of the giant magnon. Note that this ansatz assumes

the SO(3) symmetry of S2.

6The giant hedge-hog in [33] shares the same properties.
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Figure 2: A sketch of fat magnon

With this ansatz the D3-brane action yields

SD3 = −T3

[∫
dτd3σ

√
− det(Gµν∂aXµ∂bXν + 2πl2sFab) +

∫
C4

]

= −4πR4T3

∫
dτdσ sin2 σ

[
(1 − r2)

√
D − (1 − r2)2φ̇

]
, (2.9)

where

D =
r′2

1 − r2
+ r2φ′2 − r′2

1 − r2
r2φ̇2 −

(
2πl2s
R2

)2

F 2
τσ + (1 − r2)(1 − r2φ̇2) , (2.10)

and Tp = 2π
gs(2πls)p+1 . So the effective tension is T ≡ 4πR4T3 = 2

πN , and 2πl2s/R
2 = 2π/

√
λ.

We further make the following ansatz to find a solution:

x1 = const ,
2π√

λ
Fτσ = ±x′

2 . (2.11)

Again we wish to find the solution with φ̇ = 1. Then the equation of motion with respect

to φ yields
d

dσ

(
sin2 σ x′

2

)
= 0 . (2.12)

The equation of motion with respect to r is then trivially satisfied, and the Aσ equation of

motion yields
d

dσ

(
sin2 σ Fτσ

)
= 0 , (2.13)

which is equivalent to (2.12), given the above ansatz.

Thus the ansatz is consistent and the solution is given by

x2 = c − κ cot σ , (2.14)

– 7 –
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Figure 3: A sketch of fat magnon in LLM coordinates

where c and κ are the constants. As we will see shortly, the constant κ is fixed by the flux

quantization. Although κ can be either positive or negative, we will consider the positive

case for definiteness unless otherwise stated.

As is clear from the metric (2.1), the radius squared of S3 is R2(1−r2) = R2(1−x2
1−x2

2).

Thus the solution (2.14) implies that the S3 is elongated along the χ = σ direction. Let

the range of σ be σ0 ≤ σ ≤ π − σ0. In accordance with the giant magnon, we impose

the boundary condition that the fat magnon stretches all the way between the edge of the

droplet, that is, x2(σ0) = −
√

1 − x2
1 and x2(π−σ0) =

√
1 − x2

1. So in LLM coordinates the

fat magnon looks like the figure 3. The thickness of the fat magnon grows in the directions

orthogonal to the (x1, x2) plane.

Now the electric flux must be quantized. The quantization yields

πA ≡ ∂L
∂Ȧσ

= ±4N√
λ

κ = k , (2.15)

where k is an integer and the number of F-strings. Hence the constant κ is determined as

κ = ±
√

λ

4N
k . (2.16)

As in the case of the giant magnon, the energy and angular momentum diverge. In

fact the momentum density is given by

πφ ≡ ∂L
∂φ̇

= T sin2 σ

[
r2r′2

1 − r2
+ (1 − r2)

]
, (2.17)

and the Hamiltonian (density) by H = FτσπA + φ̇πφ − L = kFτσ + πφ. However, their

difference is finite and given by

E − J =

∫
dσFτσπA =

kR2

2πl2s

∫ √
1−x2

1

−
√

1−x2
1

dx2 = k

√
λ

π
sin

p

2
. (2.18)

– 8 –



J
H
E
P
0
4
(
2
0
0
7
)
0
1
0

This is k multiple of the anomalous dimension of the giant magnon (2.6). Indeed since k

is the number of F-strings,7 the single string case precisely agrees with the giant magnon

result, as expected. The k > 1 case corresponds to the superposition of k giant magnons

with the same momentum p.

As the calculation tells, the only contribution to the anomalous dimension comes from

the electric flux, thus from the F-strings/giant magnons. The contribution from the D3-

brane is absent. As mentioned above, E−J is zero for the giant graviton. This may suggest

that two contributions are simply additive. That would be the case if the fat magnon is a

marginal bound state of the giant graviton and giant magnon. We will now provide further

evidence for this observation.

2.1.3 A closer look at the fat magnon

The formula (2.17) for the angular momentum contains more information than just being

singular. We will see that it is composed of two parts — the part precisely the same as the

giant magnon angular momentum and the contribution from the giant graviton.

The first term diverges at the edge r = 1 of the droplet, but it is precisely the same

as the giant magnon angular momentum density (for k = 1). To see it, we rewrite the first

term as

πgm⊂ fm
φ ≡ T sin2 σ

r2r′2

1 − r2
= T sin2 σ

x2
2x

′2
2

1 − r2
= ±k

√
λ

2π

x2
2x

′
2

1 − r2
. (2.19)

This is indeed k multiple of the giant magnon angular momentum density (2.5).

We now argue that the second term πgg⊂ fm
φ of πφ is the contribution from the giant

graviton. It can be evaluated as

q ≡
∫ π−σ0

σ0

dσπgg⊂ fm
φ = N

(
1 − 2

π
σ0

)(
sin2 p

2
− κ2

)
+

N

π
sin(2σ0)

(
sin2 p

2
+ κ2

)
, (2.20)

where σ0 = tan−1
(

κ
sin(p/2)

)
setting c = 0 in (2.14) and 0 ≤ σ0 ≤ π

2 . Here we have implicitly

restricted to the case κ > 0, or equivalently the plus sign with positive k in (2.19). This

is reflected in the orientation of the fat magnon we have chosen. The other choice would

have yielded the minus of this result.

Recall that we are in the strict N → ∞ limit. The constant κ is then taken to zero,

provided that k ∼ O(1). In order to comply with our boundary condition, this limit must

be taken keeping κ cot σ0 = sin p
2 fixed. To summarize we take the limit

κ , σ0 → 0 keeping κ cot σ0 = sin
p

2
fixed . (2.21)

In this limit the giant graviton angular momentum becomes

q → N sin2 p

2
. (2.22)

The angular momentum q must be quantized and an integer, but the ratio q/N can take a

continuous value in the large N and q limit (classical limit).

7The strings are uniformly smeared over S2.
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Figure 4: A sketch of fat magnon in LLM coordinates near the limit (2.21)

Recall that the size Rgg of the giant graviton is related to its angular momentum q by

Rgg = R
√

q
N [27, 28]. So in the current case, the size of the giant would be Rgg = R sin p

2 .

In fact, as we can see from (2.14) with c = 0, x2 is almost zero except at the ends of the

range of σ in our limit. This means that the fat magnon is almost a perfect S3 but it

develops sharp spikes at the north and south poles, as depicted approximately in figure 4.

Indeed the size of S3 away from the poles is R
√

1 − r2 = R sin p
2 , in accordance with the

relation between the size and angular momentum of the giant graviton.

We have not checked the supersymmetries of the fat magnon explicitly. However, it

is quite likely that the fat magnon is BPS in the limit (2.21). A more detailed look at

the D3-brane action provides supports for it. The DBI part of the D3-brane action has a

square root factor. Typically the inside of the square root becomes a perfect square for

BPS solutions. This is indeed the case for the fat magnon: D defined in (2.10) becomes

(1−r2)2. Moreover, the Lagrangian density L is vanishing. The same happens for the BPS

giants. In that case, the vanishing Lagrangian results in the BPS saturation E = J . In the

fat magnon case, as we have seen, the energy is equal to E = Jgg +Jgm +∆, where Jgg and

Jgm are the angular momenta of the giant graviton and giant magnon respectively, and ∆

is the anomalous dimension (2.18). So the energy is a simple sum of the giant graviton

energy Egg = Jgg and giant magnon energy Egm = Jgm + ∆. Each one of them is BPS. So

we may conclude that the fat magnon is a threshold BPS bound state.

Finally we comment on the validity of our approximation. The curvature of the fat

magnon behaves near the spikes (σ ∼ 0, π) as

Rfm ∼ 1

R2 sin2 σ(1 − r2)

κ→0−→ 1

R2 sin2 p
2 sin2 σ

. (2.23)

Thus the curvature becomes large. This also implies that the energy density becomes

– 10 –
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large. So strictly speaking, the probe approximation is not valid near the spikes. The

probe approximation breaks down also in the giant magnon case. The energy density

diverges at the endpoints in that case. In the fat magnon case, however, the description

in terms of the DBI+CS action also breaks down near the spikes. The σ derivatives of

the collective coordinate x2 and the field strength Fτσ blow up at the spikes. So generally

speaking, there will be higher derivative corrections to be taken into account. However, we

believe that, as is often the case for BPS configurations, those corrections are protected

from being generated and the probe and DBI+CS approximation can still provide the

accurate results.

2.2 The gauge theory side — dual CFT operator

We wish to find a conceivable proposal for the dual CFT operator for the fat magnon.

There are three elements in the character of the fat magnon which would compose the

basis for a possible proposal: (1) giant magnon, (2) sphere giant (giant gravion in S5), (3)

attaching the giant magnon (open string) to the giant graviton (D3-brane). So the logical

step to take is to understand the dual CFT operators for (1) the giant magnon, (2) sphere

giant, and (3) sphere giant with open strings attached, and combine them together. Indeed

each one of them is known:

(1) The CFT operator dual to the giant magnon takes the Bethe ansatz form [6 – 8],

(Op)
i

j =
∑

l

eipl (· · ·ZZWZZ · · ·) i
j , (2.24)

where l denotes the location of W . Note that it is not traced. If it was, the phase

factor eipl would have been trivial. In other words, we do not impose the cyclic in-

variance on the spin chain states, in order to have nonzero single magnon momentum.

Two indices left uncontracted mark the endpoints of the giant magnon, a macroscopic

open string.

(2) The operator dual to the sphere giant is a (sub-)determinant operator (or the trace

over an antisymmetric representation) [37, 38].

Ogg = ε
i1i2···iq−1iq
j1j2···jq−1jq

Z j1
i1

Z j2
i2

· · ·Z jq

iq
, (2.25)

where ε
i1i2···iq−1iq
j1j2···jq−1jq

≡ q!δ
[i1
[j1

δi2
j2
· · · δiq−1

jq−1
δ
iq ]
jq] =

∑
σ∈Sq

(−1)σδi1
σ(j1)δ

i2
σ(j2) · · · δ

iq−1

σ(jq−1)δ
iq
σ(jq),

and the square bracket denotes the anti-symmetrization. Incidentally this operator

can be rewritten in terms of multi-trace operators.

The reason for this operator being the dual of sphere giant may be understood by

mapping the giant gravitons into the matrix (Z) quantum mechanics/free fermion

system [38, 39, 35, 40]. The eigenstates of the matrix quantum mechanics Hamilto-

nian are given by the characters χR(Z) for the representation R. In terms of the free

fermions, the sphere giant is a hole, while the AdS giant (giant graviton in AdS5) is

a particle. The former translates to the antisymmetric, and the latter the symmetric

representation. The length of column and row in the Young tableaux corresponds
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to the energy/angular momentum of the giant. Incidentally the former being the

antisymmetric representation results in the existence of the maximal angular mo-

mentum/energy/size of the sphere giant, that is, qmax = N — stringy exclusion

principle [27]. This accords with the fact that the energy of a hole is bounded from

above, set by the Fermi energy.

(3) The operator dual to the sphere giant with an open string excitation was conjectured

to be [41]

Ogg+open = ε
i1i2···iq−1iq
j1j2···jq−1jq

Z j1
i1

Z j2
i2

· · ·Z jq−1

iq−1
O[Φi,DlZ]

jq

iq
, (2.26)

where Dl is the covariant derivative in R×S3, and O[Φi,DlZ] is a monomial (“word”)

composed of the real adjoint scalars Φi=1,···,6 and DlZ, corresponding to the open

string excitation.

This is based on the observation that the frequencies of small fluctuation modes on

the giant do not depend on its size, that is, ωk = (k, k + 1, k + 2)/R where k is

the angular momentum in S3 the worldvolume of the giant [42]. There are three

patterns depending on in which direction the giant vibrates. This peculiar property

of the vibration modes ensures that the simple insertion of the operator of the type

O[Φi,DlZ] yields the right quantum numbers.

However, there is a restriction on the form of O[Φi,DlZ]. The beginning and end of

the word cannot be Z. By applying the expansion

ε
i1i2···ip
j1j2···jp

=

p∑

q=1

(−1)p−qδ
ip
jq

ε
i1i2···iq−1iqiq+1···ip−1

j1j2···jq−1jq+1·····jp
,

it is straightforward to show that

(p − 1)ε
i1i2···iq−1iq+1···ip−1iq
j1j2···jq−1jq+1···jp−1jp

Zj1
i1
· · ·Zjq−1

iq−1
Z

jq+1

iq+1
· · ·Zjp−1

ip−1
(ZO′)

jp

iq

= ε
i1i2···ip−1

j1j2···jp−1
Zj1

i1
· · ·Zjp−1

ip−1
Tr(O′) − ε

i1i2···ip
j1j2···jp

Zj1
i1

Zj2
i2
· · ·Zjp−1

ip−1
(O′)

jp

ip
, (2.27)

where ZO′ = O, and a similar formula holds for the case of Z at the end. This means

that if Z sits at the beginning or end of the word, the operator (2.26) breaks into the

sphere giant (εZ · · ·Z) with a closed string emission (TrO′) and a larger giant with

an open string excitation (εZ · · ·ZO′) on it. So in that case the operator (2.26) is

not an independent operator.

We are now in a position to make a proposal. The most naive guess for the operator

dual to the fat magnon would be8

Ofat
p

??
= lim

N→∞,q→∞

q/N=sin2 p

2

ε
i1i2···iqiq+1

j1j2···jqjq+1
Z j1

i1
Z j2

i2
· · ·Z jq

iq
(Op)

jq+1

iq+1
, (2.28)

where Op is the dual CFT operator for the giant magnon (2.24). Note that the giant

graviton momentum q must be equal to N sin2 p
2 , as explained in (2.22).

8This type of operators was previously considered in [43].
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There appear to be two problems in this proposal; (1) The beginning and/or end of the

word Op are/is Z. The repeated use of the above formula yields the sum of many giants

plus closed string emission (and a single maximal giant with W ). (2) This operator can be

rewritten in terms of the (multi-)traces. In this case it implies that the phase factor eipl is

trivial. Either way the anomalous dimension of this operator cannot depend on p.

We need to find a way to evade these problems. Given the fact that the gauge theory

operator dual to the giant magnon is non-gauge invariant (see (2.24)), we might as well

consider the non-gauge invariant operator for the fat magnon. A possibility we propose is

(
Ofat

p

) i0

j0

?
= lim

N→∞,q→∞

q/N=sin2(p/2)

ε
i0i1i2···iqiq+1

j0j1j2···jqjq+1
Z j1

i1
Z j2

i2
· · ·Z jq

iq
(Op)

jq+1

iq+1
. (2.29)

In this case the phase factor eipl in Op does not yield trivial, evading the second of the

problems faced above. A formula similar to (2.27) still holds in this non-gauge invariant

case. However, the repeated application of the formula would not lead us to the linear

dependence, if at all, of this operator in any obvious way, due to the non-triviality of the

summation over l with the phase factor eipl. So it seems to evade the first of the above

problems too.

The corresponding proposal for the case of k > 1 would then be

(
Ofat

kp

) i0

j0

?
= lim

N→∞,q→∞

q/N=sin2(p/2)

ε
i0i1i2···iqis1 ···isk

j0j1j2···jqjs1
···jsk

Z j1
i1

Z j2
i2

· · ·Z jq

iq
(Op)

js1

is1
· · · (Op)

jsk

isk
. (2.30)

In order to construct physical objects of the fat magnon type, we need to combine

multiple of them together, connecting one end after another to eventually close the loop,

In the case of giant magnons, the corresponding physical CFT operator is an appropriate

superposition (determined by the Bethe Ansatz) of the following type of operators:

∑

l1,···,lk

ei(p1l1+···+pklk)Tr (· · ·ZZWZ · · ·ZWZZ · · ·) , (2.31)

where p1 + · · · + pk = 0, and there are k insertions of W s at the locations l1, · · · , lk. This

is equivalent to

(Op1
)

js1

is1
(Op2

)
is2

js1
· · ·

(
Opk−1

) jsk−1

isk−2

(Opk
)

is1
jsk−1

(2.32)

by allowing the locations li to be anywhere in the whole chain beyond the i-th chain.

So it seems natural to propose that the physical CFT operator for the fat magnons be

an appropriate superposition of the operators

(
Ofat

p1

) js1

is1

(
Ofat

p2

) is2

js1

· · ·
(
Ofat

pk−1

) jsk−1

isk−2

(
Ofat

pk

) is1

jsk−1

(2.33)

with p1 + · · · + pk = 0 and allowing the locations li in Opi
(in Ofat

pi
) to be anywhere in the

longer chain whenever several Opi
s connect.

However, at this stage we may state that it is currently not well-understood how to

precisely combine multiple fat magnons to build a physical object.
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3. Conclusion

We found a new D-brane type state in AdS/CFT/spin chain triality. It is a bound state of

the giant graviton (D3-brane) and giant magnons (F-strings), and has the same anomalous

dimension as that of the giant magnons. In other words, the giant magnons can become

fat by the Myers effect due to the 5-form RR flux. It is also a generalization of BIon in a

curved background (S5) carrying the angular momentum.

There are a few obvious directions to pursue. It would be interesting to consider the

generalization to the bound state of multi-magnons, i.e., the giant magnon with two or three

angular momenta. On this score, an explicit check of the supersymmetry (κ-symmetry) of

the fat magnon is preferable, and it would help us to find the generalization to the multi

magnon bound states. Also it would be nice to understand the scattering of fat magnons.

We discussed a possible form of the dual CFT operator for the fat magnon. Given

that the fat magnon is a bound state of the giant graviton and giant magnon, it is quite

conceivable that the CFT operator is an admixture of the (sub-)determinant and chain

type. Although our proposal is incomplete, there does not seem to be much room for the

operator to take the form other than (2.29). Yet clearly the further study is required.

More importantly it is desirable to understand the relevance of the fat magnon to the

spin chain system. This question might require us to study the length varying spin chain

of [44, 43, 45].
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